TURGEONLAB*

Meta-Analysis Without Missing

Seeing the Forest for the Trees

Ricky D. Turgeon BSc(Pharm), ACPR, PharmD

Associate Member | UBC Division of Cardiology Assistant Professor | UBC Faculty of Pharmaceutical Sciences Clinical Pharmacy Specialist | St. Paul's Hospital PHARM-HF Clinic

Plan for this session

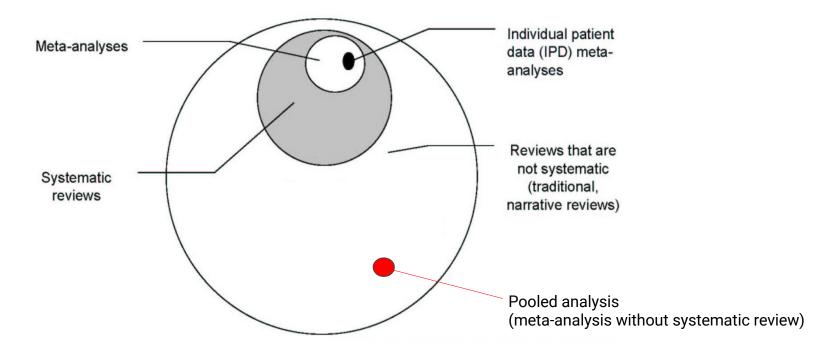
- 1. Overview of different review types & their purposes
- 2. Systematic reviews: Key ingredients & best practices
- 3. Meta-analysis: The 2 reasons to meta-analyze (with examples)
- 4. Special topics in meta-analysis: Beyond the forest plot
 - Bayesian
 - Individual participant data
 - Network

Key tools & references

Cochrane Handbook: <u>training.cochrane.org/handbook/current</u>

Covidence: guides.library.ubc.ca/covidence

MiniMeta: minimeta.net/


PRISMA 2020 reporting checklist: <u>prisma-statement.org/prisma-2020</u>

ROBUST-RCT risk of bias tool: bmj.com/content/388/bmj-2024-

081199

1: Overview of different review types & their purposes

Types of reviews

Narrative review

Systematic review

Scoping review

	Narrative review	Systematic review	Scoping review
Purpose	Usually broad questions	Specific, focused question ("PICO")	Map out a topic/concept, identify knowledge gaps

CLINICAL PRACTICE

Patrick G. O'Malley, M.D., M.P.H., Editor

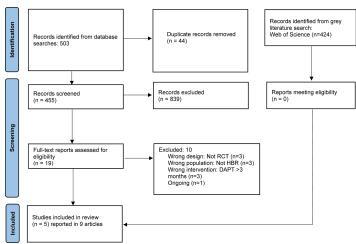
Heart Failure with Preserved Ejection Fraction

Antonio Cannata, M.D., and Theresa A. McDonagh, M.D.

FASTTRACK – CLINICAL RESEARCH Ischaemic heart disease

Colchicine for secondary prevention of vascular events: a meta-analysis of trials

CJC Open 5 (2023) 136-147

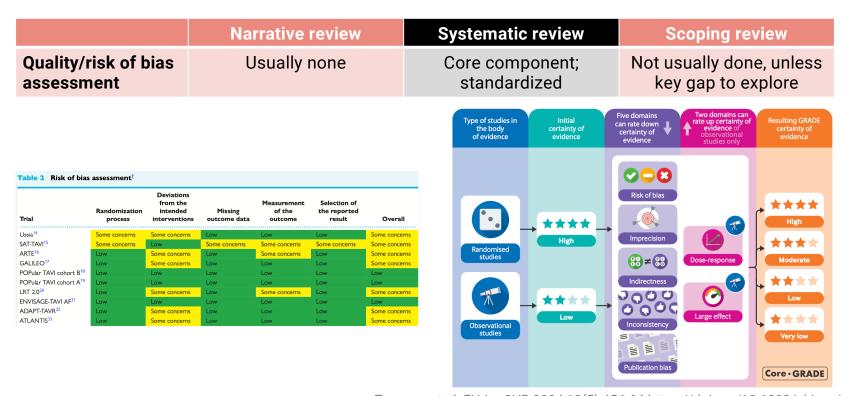

Systematic Review/Meta-analysis

Decisional Needs and Patient Treatment Preferences for Heart Failure Medications: A Scoping Review

	Narrative review	Systematic review	Scoping review
Search strategy	Usually not described; often focused on published, high-impact articles	Exhaustive, transparent, reproducible; often includes unpublished articles	As with systematic reviews; sometimes broader/more iterative

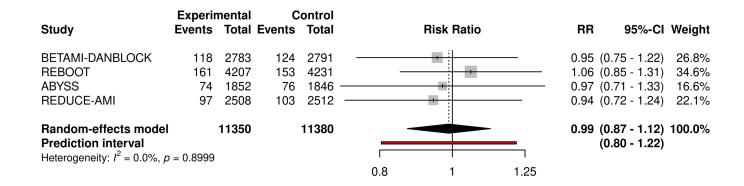
S1 Appendix. Database search strategy

MEDLINE (inception to August 18, 2022)	Embase (2019 to August 18, 2022)	CENTRAL (2019 to August 18, 2022)		
percutaneous coronary intervention.mp. or Percutaneous Coronary Intervention/ high bleed* risk.mp. Hatelet Aggregation Inhibitors/ or antiplatelet.mp.	percutaneous coronary intervention.mp. or percutaneous coronary intervention/ high bleed* risk.mp. dual antiplatelet therapy/ or antiplatelet.mp. p2y12.mp.	percutaneous coronary intervention.mp. or Percutaneous Coronary Intervention/ high bleed*.mp. or Platelet Aggregation Inhibitors/ clopidogrel.mp. or		
Platelet Aggregation Inhibitors/ or p2y12.mp.	5. acetylsalicylic acid plus clopidogrel/ or	Clopidogrel/ 5. prasugrel.mp. or		
clopidogrel.mp. or Clopidogrel/	clopidogrel/ or clopidogrel.mp.	Prasugrel Hydrochloride/ 6. ticagrelor.mp. or		
6. prasugrel.mp. or Prasugrel Hydrochloride/	prasugrel.mp. or prasugrel/	Ticagrelor/ 7. 3 or 4 or 5 or 6		
7. ticagrelor.mp. or Ticagrelor/	7. ticagrelor.mp. or ticagrelor/	8. 1 and 2 and 79. limit 8 to medline records		
8. 3 or 4 or 5 or 6 or 7 9. 1 and 2 and 8	8. 3 or 4 or 5 or 6 or 7 9. 1 and 2 and 8	10. limit 9 to embase records 11. 9 or 10		
10. limit 9 to "therapy (maximizes specificity)"	10. limit 9 to "therapy (maximizes specificity)"	12. 12. 8 not 11		



PLOS ONE 2023; https://doi.org/10.1371/journal.pone.0291061

	Narrative review	Systematic review	Scoping review
Study eligibility criteria	Vague	Explicitly stated; Specific, narrow	Explicit stated; often broad/inclusive (especially of design)


Study selection and data extraction

We included parallel randomized controlled trials (RCTs) that enrolled patients who underwent PCI for either ACS or non-ACS indications and had HBR, or reported on a subgroup of patients with HBR, and compared DAPT for 1–3 months followed by SAPT ("short DAPT"), to DAPT for 6–12 months ("standard DAPT"). We included RCTs if they defined HBR based on the ARC-HBR criteria or other explicitly defined criteria.

Turgeon, et al. EHJ - CVP 2024;10(5):454-64 https://doi.org/10.1093/ehjcvp/pvad101

	Narrative review	Systematic review	Scoping review
Data synthesis	Narrative	Structured, quantitative ± meta-analysis	Typically descriptive, thematic, visual

2: Systematic reviews: Key ingredients & best practices

Key steps to conduct a systematic review

- 1. Establish a research team with appropriate areas of expertise
- 2. Prepare the protocol
 - i. Define the research question(s) and scope of the review
 - ii. Design the search strategy
 - iii. Define inclusion and exclusion criteria
 - iv. Identify data to be collected from the included studies
 - v. Select tools and methods for assessing the risk of bias of included studies
 - vi. Determine the analytic plan
- 3. Execute the search
- 4. Screen citations for inclusion into the review
- 5. Collect data from the included studies, including elements to describe the study-level PICO, risk of bias and for analytic purposes
- Evaluate the risk of bias of each included study, at the level of the outcome
- 7. Synthesize evidence, either qualitatively or in combination with quantitative analytics (meta-analysis)
- 8. Report the systematic review in accordance with established best practices

Key steps to conduct a systematic review: Tools & tips

- 1. Establish a research team with appropriate areas of expertise
- 2. Prepare the protocol
 - i. Define the research question(s) and scope of the review
 - ii. Design the search strategy
 - iii. Define inclusion and exclusion criteria
 - iv. Identify data to be collected from the included studies
 - v. Select tools and methods for assessing the risk of bias of included studies
 - vi. Determine the analytic plan
- 3. Execute the search
- 4. Screen citations for inclusion into the review
- Collect data from the included studies, including elements to describe the study-level PICO, risk of bias and for analytic purposes
- 6. Evaluate the risk of bias of each included study, at the level of the outcome
- 7. Synthesize evidence, either qualitatively or in combination with quantitative analytics (meta-analysis)
- 8. Report the systematic review in accordance with established best practices

Key team members:

- Librarian for the search
- Meta-analyst/statistician for the analysis

Covidence or Rayyan

Risk of bias tools for RCTs:

- Cochrane RoB2
- ROBUST-RCT tool

Key steps to conduct a systematic review vs critical appraisal

- 1. Establish a research team with appropriate areas of expertise
- 2. Prepare the protocol
 - i. Define the research question(s) and scope of the review
 - ii. Design the search strategy
 - iii. Define inclusion and exclusion criteria
 - iv. Identify data to be collected from the included studies
 - v. Select tools and methods for assessing the risk of bias of included studies
 - vi. Determine the analytic plan
- 3. Execute the search
- 4. Screen citations for inclusion into the review
- 5. Collect data from the included studies, including elements to describe the study-level PICO, risk of bias and for analytic purposes
- 6. Evaluate the risk of bias of each included study, at the level of the outcome
- 7. Synthesize evidence, either qualitatively or in combination with quantitative analytics (meta-analysis)
- 8. Report the systematic review in accordance with established best practices

BOX 14-1

Users' Guides for Credibility of the Systematic Review Process

Did the review explicitly address a sensible clinical question?

Was the search for relevant studies exhaustive?

Was the risk of bias of the primary studies assessed?

Did the review address possible explanations of between-study differences in results?

Did the review present results that are ready for clinical application?

Were selection and assessments of studies reproducible?

Did the review address confidence in effect estimates?

Al for evidence synthesis (in 2025)?

2025 systematic review (done by humans)

- 19 studies performing various SR tasks
 - 17 used ChatGPT (various models, including 4o)
 - Comparator: Human experts
 - Task success:
 - Searching: Missed 68-96% of relevant studies
 - Screening: 8-71% error rate for titles/abstracts & 4-46% for full-text
 - Data extraction: 4-31% error rate
 - Risk of bias assessment: 10-56% error rate

Al for evidence synthesis (in 2025)?

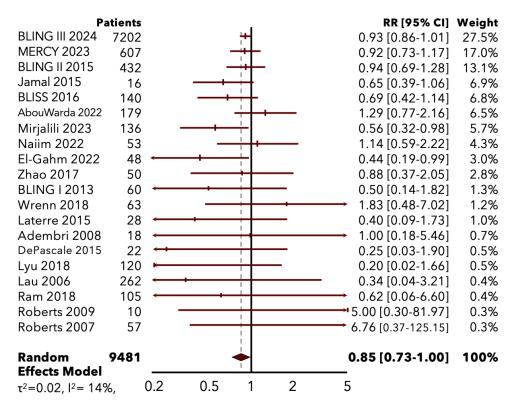
2025 systematic review (done by humans)

- 19 studies performing various SR tasks
 - 17 used ChatGPT (various models, including 4o)
 - Comparator: Human experts
 - Task success:
 - Searching: Missed 68-96% of relevant studies
 - Screening: 8-71% error rate for titles/abstracts & 4-46% for full-text
 - Data extraction: 4-31% error rate
 - Risk of bias assessment: 10-56% error rate
- Authors' quote: This suggests that we made a wise

decision not to use GenAI to assist in conducting this review.

3: Meta-analysis: The 2 reasons to meta-analyze & examples

There are 2 reasons to meta-analyze: #1. Increase power & precision

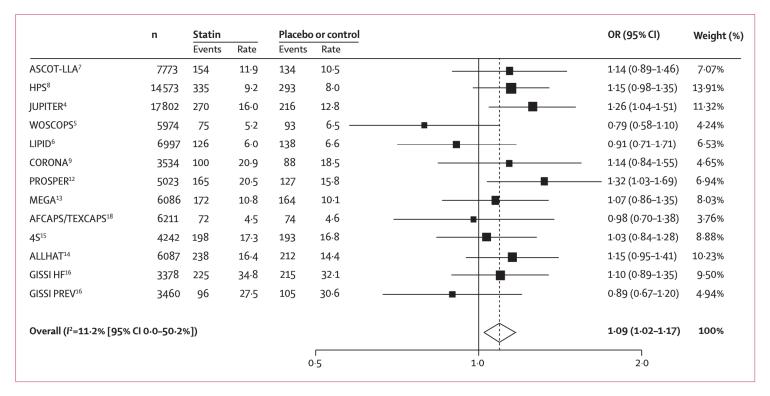

Combine data across studies that address a sufficiently similar PICO

Detect effects that may not be apparent in individual studies

- Death, when individual studies focused on broader composite endpoint
- Clinical endpoints, when individual studies focused on surrogates
- Safety, specific harms

Result: Smaller p-values, narrower confidence intervals around effect size vs individual studies

E.g. 1, mortality: Prolonged vs intermittent infusions of IV antibiotics & mortality



E.g. 2, underpowered secondary outcome: Incretin mimetics in HFmrEF/pEF & CV death/HFH

A) Composite of CV Death or Worsening HF event

			GLP-1RAs	Placebo		Hazard Ratio		Hazard	Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI		IV, Randon	n, 95% CI	
EXSCEL	-0.2357	0.1674	499	561	25.0%	0.79 [0.57, 1.10]		-		
FLOW	-0.1462	0.224	167	158	19.5%	0.86 [0.56, 1.34]			-	
SELECT	-0.2877	0.183	1174	1099	23.4%	0.75 [0.52, 1.07]				
STEP HFpEF	-2.4663	0.8216	263	266	2.7%	0.08 [0.02, 0.42]	_			
STEP HFpEF DM	-0.7853	0.4082	310	306	9.1%	0.46 [0.20, 1.01]				
SUMMIT	-0.478	0.216	364	367	20.2%	0.62 [0.41, 0.95]		-		
Total (95% CI)			2777	2757	100.0%	0.68 [0.51, 0.89]		•		
Heterogeneity: Tau ² =	0.05; Chi ² = 9.51, df	= 5 (P =	0.09); $I^2 = 47$	'%			+	0.1	10	50
Test for overall effect:	Z = 2.77 (P = 0.006)						0.02	Favours GLP-1RAs		50

E.g. 3, harms: Risk of incident diabetes with statin vs control in 13 RCTs

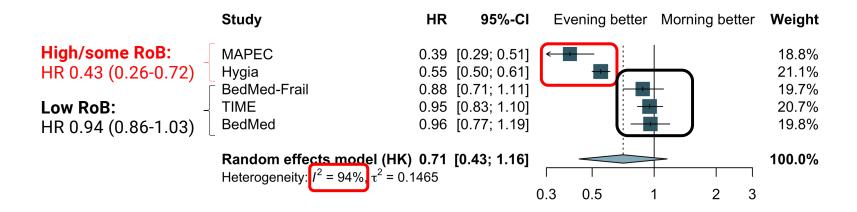
There are 2 reasons to meta-analyze: #2. Identify & explain inconsistency

- Detect differences in effect between studies (statistical heterogeneity)
 - Visual differences apparent in the forest plot
 - Test for heterogeneity (e.g. I²)
- Explain heterogeneity
 - Meta-regression
 - Sensitivity analyses (e.g. trial-level subgroup analysis, leave-one-out analysis)
- Explore subgroup differences, aka heterogeneity of treatment effect
 - Ideally within & between studies

E.g. 4, confirm consistency: Cryoablation vs antiarrhythmic drugs in early AF & quality of life

B Mean Difference in AFEQT Score

	Cry	oablat	ion		AAD			Mean Difference		Mean I	Difference	
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C		IV, Rand	om, 95% C	
Cryo-FIRST	88	14.8	89	78.1	14.8	92	33.7%	9.90 (5.59-14.21))		-	
EARLY-AF	88.3	19.1	154	80.3	19.1	149	33.9%	8.00 (3.70-12.30))			-
STOP-AF First	91.9	15.4	99	84.9	15.4	90	32.4%	7.00 (2.60-11.40))			-
Total (95% CI)			342			331	100.0%	8.32 (5.81-10.82))		•	
Heterogeneity: 1					lf = 2 (<i>l</i>	P = 0.64	l); I ² = 0%		-20	-10	0 10	20
Test for overall e	eπect: Z =	6.51 (P < 0.00	1001)						avors AAD	Favors C	ryoablation


E.g. 5, heterogeneity: Timing of BP-lowering med administration & trial-level risk of bias

Study	HR	95%-CI	Ev	ening better	Morning better	Weight
	0.00	10.00.0.541			I	40.00/
MAPEC		[0.29; 0.51]	\leftarrow			18.8%
Hygia	0.55	[0.50; 0.61]		-		21.1%
BedMed-Frail	0.88	[0.71; 1.11]		-	 -	19.7%
TIME	0.95	[0.83; 1.10]		-	┡	20.7%
BedMed	0.96	[0.77; 1.19]		-	<u> </u>	19.8%
Random effects model (HK)		[0.43; 1.16]			_	100.0%
Heterogeneity: $I^2 = 94\%$, $\tau^2 = 0$.	1465	_				
			0.3	0.5	1 2 3	

E.g. 5, heterogeneity: Timing of BP-lowering med administration & trial-level risk of bias

Study	HR	95%-CI	Ev	ening better	Morning better	Weight
MAPEC Hygia BedMed-Frail TIME BedMed	0.55 0.88 0.95	[0.29; 0.51] [0.50; 0.61] [0.71; 1.11] [0.83; 1.10] [0.77; 1.19]				18.8% 21.1% 19.7% 20.7% 19.8%
Random effects model (HK) Heterogeneity: $t^2 = 94\%$, $\tau^2 = 0$.	0.71 1465	[0.43; 1.16]	0.3	0.5	1 2 3	100.0%

E.g. 5, heterogeneity: Timing of BP-lowering med administration & trial-level risk of bias

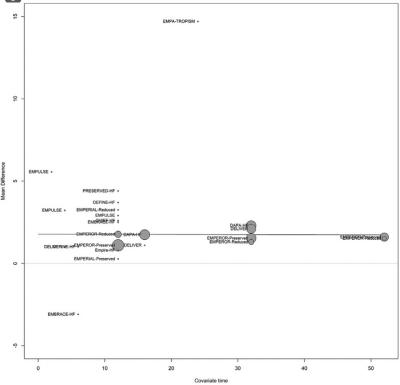
E.g. 6, identifying & explaining heterogeneity: SGLT2Is in HF & quality of life

Α			Fyne	rimental			Control								
	Study	Total	Mean		Total	Mean	SD		Mea	n Differe	ence		MD	95%-CI	Weight
	DAPA-HF DELIVER EMPEROR-Preserved EMPEROR-Reduced EMPERIAL-Reduced PRESERVED-HF EMPERIAL-Preserved DEFINE-HF CHIEF-HF EMPULSE Empire-HF EMBRACE-HF EMPA-TROPISM	2243 2473 1239 147 152 153 130 208 230 94 33	75.10 1.60 1.52 9.65 68.90 5.80 72.60 61.70 69.75 77.60 64.20	12.8755 13.6689 15.0458 15.4895 14.3094 14.9003 15.0406 14.2005 22.2000 23.6900 17.6000 16.7694 13.3000	2243 2473 1239 147 152 153 130 208 230 94 33	73.00 0.00 0.00 6.40 64.50 5.53 68.90 59.10 66.84 76.80 61.70				+	- - -		4.40 0.27 3.70 2.60 2.91 0.80 2.50	[1.30; 2.90] [0.76; 2.44] [0.30; 2.74] [-0.02; 6.52] [1.05; 7.75] [-3.10; 3.64] [0.25; 7.15]	28.2% 26.8% 24.4% 11.5% 1.6% 1.5% 1.4% 1.0% 0.9% 0.6% 0.3% 0.2%
	Random effects model Heterogeneity $I^2 = 25\%$, τ^2		001, p =	0.19	9246			-20	-10	0	10	20	2.05	[1.52; 2.58]	100.0%

E.g. 6, identifying & explaining heterogeneity: SGLT2Is in HF & quality of life

Table 3. Subgroup analyses

		KCCQ-OSS								
Outcome	MD (95% CI)	Number of studies (sample size, n)								
Timepoint		P = 0.04								
LVEF category, %		P = 0.30								
≤ 40	2.15 (1.53-2.78)	5 (7428)								
> 40	1.89 (1.33-2.45)	4 (10,042)								
Mixed	3.96 (1.28-6.65)	4 (1022)								
Agent		P = 0.36								
Canagliflozin	2.60 (-1.59 - 6.79)	1 (416)								
Dapagliflozin	2.30 (1.75-2.84)	4 (9258)								
Empagliflozin	1.69 (1.05-2.34)	8 (8818)								


P values are for subgroup differences.

E.g. 6, identifying & explaining heterogeneity: SGLT2Is in HF & quality of life_____

Table 3. Subgroup analyses

		KCCQ-OSS								
Outcome	MD (95% CI)	Number of studies (sample size, n)								
Timepoint		P = 0.04								
LVEF category, %		P = 0.30								
≤ 40	2.15 (1.53 - 2.78)	5 (7428)								
> 40	1.89 (1.33-2.45)	4 (10,042)								
Mixed	3.96 (1.28-6.65)	4 (1022)								
Agent		P = 0.36								
Canagliflozin	2.60 (-1.59 - 6.79)	1 (416)								
Dapagliflozin	2.30 (1.75-2.84)	4 (9258)								
Empagliflozin	1.69 (1.05-2.34)	8 (8818)								

P values are for subgroup differences.

4: Special topics in metaanalysis: Beyond the forest plot

Bayesian meta-analysis

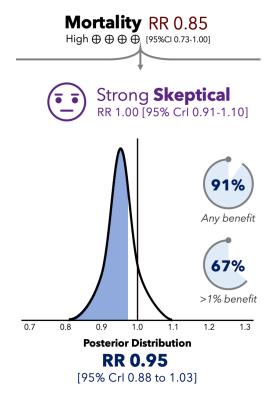
Advantages of Bayesian (vs frequentist) statistics:

- Incorporate prior information/evidence
 - More nuanced interpretations; less yo-yoing as evidence is produced
 - Tests robustness of evidence to "what ifs", different beliefs
- Probabilistic interpretations
 - E.g. "99% probability of any benefit; 85% probability of a benefit > minimal important difference"
 - Can also quantify probability of null hypothesis (which cannot be done with traditional statistics)

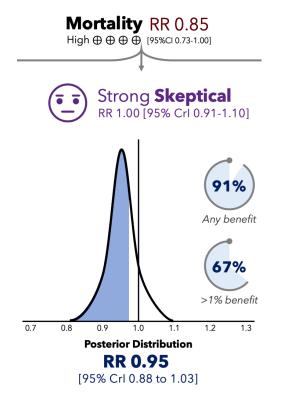
Bayesian meta-analysis Recommended reading

Canadian Journal of Cardiology 41 (2025) 30-44

Methods in Cardiovascular Research and Practice Bayesian Analytical Methods in Cardiovascular Clinical Trials: Why, When, and How


Samuel Heuts, MD, PhD,^{a,b} Michal J. Kawczynski, MD,^{a,b} Ahmed Sayed, MD,^c Sarah M. Urbut, MD, PhD,^d Arthur M. Albuquerque, MD,^e John M. Mandrola, MD,^f Sanjay Kaul, MD,^g Frank E. Harrell, Jr, PhD,^h Andrea Gabrio, PhD,^{i,j} and James M. Brophy, MD, PhD^k

Bayesian statistics for clinical research


Ewan C Goligher, Anna Heath, Michael O Harhay

Lancet 2024; 404: 1067-76

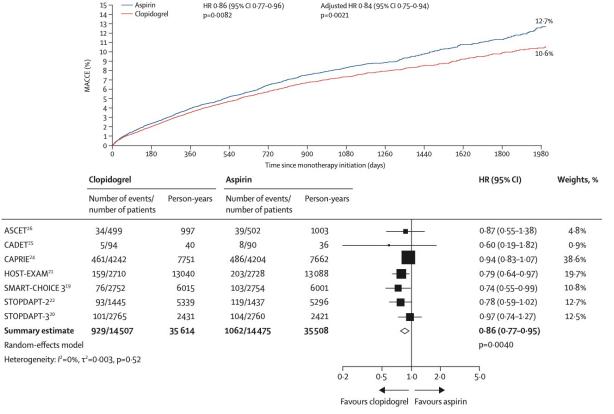
E.g. 7, Bayesian MA: Prolonged antibiotic IV infusions & mortality

E.g. 7, Bayesian MA: Prolonged antibiotic IV infusions & mortality

		Any benefit	>1% benefit	>2% benefit
Optimistic	Weak	98 %	93 %	82 %
	Moderate	99 %	94 %	82 %
	Strong	100 %	97 %	85 %
Skeptical	Weak	98 %	92 %	80 %
	Moderate	97 %	89 %	74 %
	Strong	91 %	64 %	31 %
Pessimistic	Weak	97 %	90 %	76 %
	Moderate	94 %	82 %	63 %
	Strong	33 %	9 %	2 %

Individual participant data-level meta-analysis (IPDMA)

Key advantages of IPDMA (vs trial-level MA):

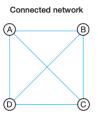

- Standardize across studies (inclusion/exclusion criteria, outcomes, follow-up duration, analysis, handling of missing data)
- Adjust for consistent set of prognostic factors
- More granular subgroup analyses

Challenges: Costly & time-consuming to obtain & analyze; requires advanced statistical expertise to fully leverage IPD with "1-stage" IPDMA

IPDfromKM: Software to reconstruct IPD for outcomes from published Kaplan-Meier

 Can be used to verify published analyses, but lack granularity for full IPDMA (events not tied to baseline characteristics/subgroups)

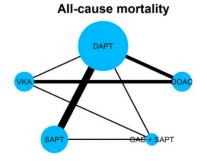
E.g. 8, IPDMA: Clopidogrel vs ASA in stable CAD/post-DAPT

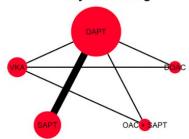

Network meta-analysis (NMA) a.k.a. multiple treatment comparison MA

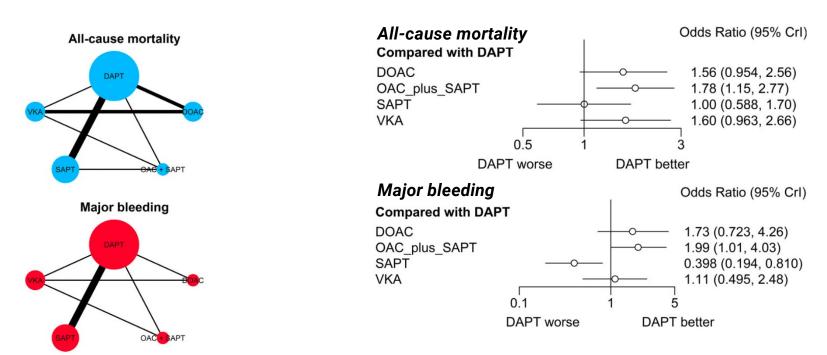
"Borrows" information from indirect evidence to:

- Allow indirect comparisons between 2 treatments (B-C) that have never been directly compared in an RCT, but have been compared to a common comparator (A-B; A-C)
- Increase precision of direct comparisons

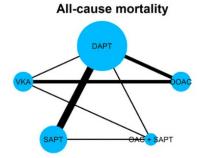
Star network


Can be done using Bayesian (most common; reasonably easy to learn using R packages gemtc, rjags) or frequentist approach

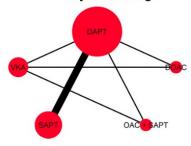

Relies on the **transitivity assumption** (*no important differences* between trials, other than treatments being compared)


- "Strong" assumption, requires a very well-defined PICO
- Assessed with statistical tests for coherence

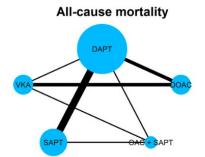
Network diagrams



Major bleeding



Turgeon, et al. EHJ - CVP 2024;10(5):454-64 https://doi.org/10.1093/ehjcvp/pvad101



Major bleeding

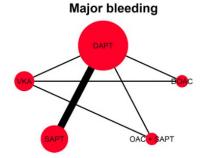
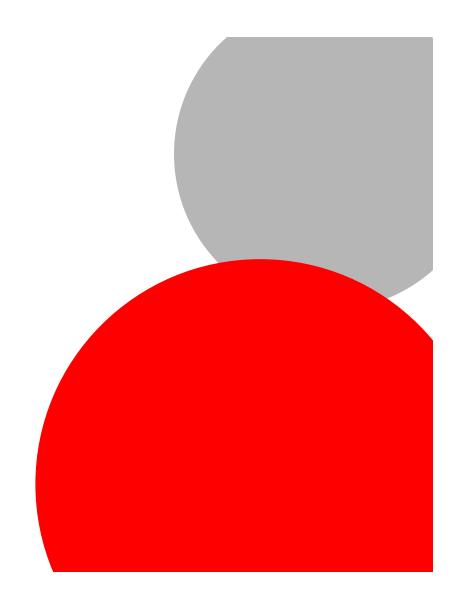

Network league table

Table 3 Pairwise comparisons for all-cause death (blue) vs. major bleeding (red) [†]									
SAPT	0.40 (0.19–0.81)	0.23 (0.08–0.71)	0.36 (0.12–1.05)	0.20 (0.07–0.54)					
1.00 (0.59–1.70)	DAPT	0.58 (0.23–1.38)	0.90 (0.40–2.02)	0.50 (0.25-0.99)					
0.64 (0.31–1.32)	0.64 (0.39–1.05)	DOAC	1.55 (0.92–2.77)	0.87 (0.35-2.22)					
0.62 (0.30–1.30)	0.62 (0.38–1.04)	0.97 (0.71–1.35)	VKA	0.56 (0.25-1.26)					
0.56 (0.28–1.12)	0.56 (0.36–0.87)	0.87 (0.50–1.50)	0.90 (0.53–1.52)	OAC + SAPT					

Network rankogram & SUCRA scores

Table 4 Rankings and surface under the cumulative ranking curve scores										
Outcome, rank (SUCRA)	SAPT	DAPT	DOAC	VKA	OAC + SAPT					
All-cause death	2 (0.81)	2 (0.86)	4 (0.36)	4 (0.30)	5 (0.18)					
Major bleeding	1 (0.99)	2 (0.62)	4 (0.19)	3 (0.58)	5 (0.12)					


SUCRA (surface under the cumulative ranking curve) values can be interpreted as the probability of an intervention being among ranked best

(i.e. SUCRA=1 means 100% of comparators are worse than the selected intervention)

TURGEONLAB

Thank you!

Questions?

